Meta-Learning: from Few-Shot Learning to Rapid Reinforcement Learning

Chelsea Finn

Sergey Levine

BERKELEY ARTIFICIAL INTELLIGENCE RESEARCH

Large, diverse data (+ large models)

Russakovsky et al. '14

Under the paradigm of supervised learning. Qs: <u>slido.com/meta</u>

Broad generalization

GPT-2 Radford et al. '19

Vaswani et al. '18

What if you don't have a large dataset?

- medical imaging robotics personalized education,
 - translation for rare languages recommendations

What if you want a general-purpose AI system in the real world?

- Need to continuously adapt and learn on the job.
 - Learning each thing from scratch won't cut it.

What if your data has a long tail?

Qs: slido.com/meta

of datapoints

#

training data Braque Cezanne

test datapoint

By Braque or Cezanne?

How did you accomplish this?

Qs: <u>slido.com/meta</u>

Through previous experience.

- Modeling image formation Geometry SIFT features, HOG features + SVM Fine-tuning from ImageNet features
 - Domain adaptation from other painters

<u>;;;</u>

Qs: slido.com/meta

How might you get a machine to accomplish this task?

Fewer human priors, more data-driven priors Greater success.

Can we explicitly learn priors from previous experience that lead to efficient downstream learning?

Can we learn to learn?

Outline

- Problem statement

- Meta-learning **algorithms**
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-**reinforcement** learning
- Challenges & frontiers

Qs: <u>slido.com/meta</u>

Two ways to view meta-learning

Mechanistic view

- Deep neural network model that can read in an entire dataset and make predictions for new datapoints
- Training this network uses a meta-dataset, which itself consists of many datasets, each for a different task
- This view makes it easier to implement metalearning algorithms

Qs: <u>slido.com/meta</u>

Probabilistic view

- Extract prior information from a set of (metatraining) tasks that allows efficient learning of new tasks
- Learning a new task uses this prior and (small) training set to infer most likely posterior parameters
- This view makes it easier to understand metalearning algorithms

Problem definitions

What is wrong with this?

> The most powerful models typically require large amounts of labeled data \succ Labeled data for some tasks may be very limited

Qs: <u>slido.com/meta</u>

regularizer (e.g., weight decay)

Problem definitions

supervised learning:

$$\arg\max_{\phi}\log p(\phi|\mathcal{D})$$

can we incorporate *additional* data?

 $\arg\max_{\phi} \log p(\phi | \mathcal{D}, \mathcal{D}_{\text{meta-train}})$

Qs: <u>slido.com/meta</u>

 \mathcal{D}

 \mathcal{D}_1

 \mathcal{D}_2

 $\mathcal{D}_{ ext{meta-train}}$

$$= \{(x_1, y_1), \ldots, (x_k, y_k)\}$$

 \mathcal{D}

$$\mathcal{D}_{\text{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$$
$$\mathcal{D}_i = \{(x_1^i, y_1^i), \dots, (x_k^i, y_k^i)\}$$

Image adapted from Ravi & Larochelle

The meta-learning problem

meta-learning:

Qs:

$$\arg\max_{\phi} \log p(\phi | \mathcal{D}, \mathcal{D}_{\text{meta-train}}) \qquad \qquad \mathcal{D}$$

what if we don't want to keep $\mathcal{D}_{\text{meta-train}}$ around forever?

learn meta-parameters θ : $p(\theta | \mathcal{D}_{\text{meta-train}})$

whatever we need to know about
$$\mathcal{D}_{\text{meta-train}}$$
 to solve new tasks

$$\log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}}) = \log \int_{\Theta} p(\phi|\mathcal{D}, \theta) p(\theta|\mathcal{D}_{\text{meta-train}}) d\theta$$

$$\approx \log p(\phi|\mathcal{D}, \theta^{\star}) + \log p(\theta^{\star}|\mathcal{D}_{\text{meta-train}})$$

$$e^{\phi} \log p(\phi|\mathcal{D}, \mathcal{D}_{\text{meta-train}}) \approx \arg \max_{\phi} \log p(\phi|\mathcal{D}, \theta^{\star})$$

$$\frac{|\mathcal{D}_{\text{meta-train}}|_{\phi}}{|\mathcal{D}_{\text{meta-train}}|_{\phi}}$$

 $\mathcal{D} = \{(x_1, y_1), \dots, (x_k, y_k)\}$ $\mathcal{D}_{ ext{meta-train}} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$ $\mathcal{D}_{i} = \{ (x_{1}^{i}, y_{1}^{i}), \dots, (x_{k}^{i}, y_{k}^{i}) \}$

this is the meta-learning problem

A Quick Example

Qs: <u>slido.com/meta</u>

Key idea:

"our training procedure is based on a simple machine learning principle: test and train conditions must match" Vinyals et al., Matching Networks for One-Shot Learning

Qs: slido.com/meta

Key idea:

"our training procedure is based on a simple machine learning principle: test and train conditions must match" Vinyals et al., Matching Networks for One-Shot Learning

Qs: slido.com/meta

???

Reserve a test set for each task!

 $\mathcal{D}_{\text{meta-train}} = \{ (\mathcal{D}_1^{\text{tr}}, \mathcal{D}_1^{\text{ts}}), \dots, (\mathcal{D}_n^{\text{tr}}, \mathcal{D}_n^{\text{ts}}) \}$ $\mathcal{D}_i^{\text{tr}} = \{ (x_1^i, y_1^i), \dots, (x_k^i, y_k^i) \}$ $\mathcal{D}_i^{\text{ts}} = \{ (x_1^i, y_1^i), \dots, (x_l^i, y_l^i) \}$

Key idea: "our training procedure is based on a simple machin

Qs: <u>slido.com/meta</u>

(meta) training-time

"our training procedure is based on a simple machine learning principle: test and train conditions must match" Vinyals et al., Matching Networks for One-Shot Learning

The complete meta-learning optimization

meta-learning: $\theta^{\star} = \arg \max_{\theta} \log p(\theta | \mathcal{D}_{\text{meta-train}})$ adaptation: $\phi^{\star} = \arg \max_{\phi} \log p(\phi | \mathcal{D}^{\text{tr}}, \theta^{\star})$ $\mathbf{1}$ $\phi^{\star} = f_{\theta^{\star}}(\mathcal{D}^{\text{tr}})$

learn θ such that $\phi = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}})$ is good for $\mathcal{D}_i^{\mathrm{ts}}$

$$\theta^{\star} = \max_{\theta} \sum_{i=1}^{n} \log p(\phi_i | \mathcal{D}_i^{\text{ts}})$$

where $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$

Qs: <u>slido.com/meta</u>

$$\mathcal{D}_{\text{meta-train}} = \{ (\mathcal{D}_1^{\text{tr}}, \mathcal{D}_1^{\text{ts}}), \dots, (\mathcal{D}_n^{\text{tr}}, \mathcal{D}_n^{\text{ts}}) \}$$
$$\mathcal{D}_i^{\text{tr}} = \{ (x_1^i, y_1^i), \dots, (x_k^i, y_k^i) \}$$
$$\mathcal{D}_i^{\text{ts}} = \{ (x_1^i, y_1^i), \dots, (x_l^i, y_l^i) \}$$

Some meta-learning terminology

learn θ such that $\phi_i = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}})$ is good for $\mathcal{D}_i^{\mathrm{ts}}$

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} \log p(\phi_i | \mathcal{D}_i^{\text{ts}})$$

where $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$

training data

test set

$$\begin{split} \mathcal{D}_{\text{meta-train}} &= \{(\mathcal{D}_{1}^{\text{tr}}, \mathcal{D}_{1}^{\text{ts}}), \dots, (\mathcal{D}_{n}^{\text{tr}}, \mathcal{D}_{n}^{\text{ts}}) \\ \mathcal{T}_{i} & \int \mathcal{D}_{i}^{\text{tr}} &= \{(x_{1}^{i}, y_{1}^{i}), \dots, (x_{k}^{i}, y_{k}^{i})\} \\ \mathcal{D}_{i}^{\text{ts}} &= \{(x_{1}^{i}, y_{1}^{i}), \dots, (x_{l}^{i}, y_{l}^{i})\} \\ \text{shot} \\ \text{(i.e., k-shot, 5-second states in the states of the stat$$

 $\mathcal{D}_{ ext{meta-train}}$

— (meta-test) task

Closely related problem settings

meta-learning:

$$\theta^{\star} = \max_{\theta} \sum_{i=1}^{n} \log p(\phi_i | \mathcal{D}_i^{\text{ts}})$$

where $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$

can be seen as special case where $\phi_i = \theta$ (i.e., $f_{\theta}(\mathcal{D}_i) = \theta$)

hyperparameter optimization & auto-ML: can be cast as meta-learning hyperparameter optimization: θ = hyperparameters, ϕ = network weights architecture search: θ = architecture, ϕ = network weights very active area of research! but outside the scope of this tutorial Qs: slido.com/meta

$$\mathcal{D}_{\text{meta-train}} = \{ (\mathcal{D}_1^{\text{tr}}, \mathcal{D}_1^{\text{ts}}), \dots, (\mathcal{D}_n^{\text{tr}}, \mathcal{D}_n^{\text{ts}}) \\ \mathcal{D}_i^{\text{tr}} = \{ (x_1^i, y_1^i), \dots, (x_k^i, y_k^i) \} \\ \mathcal{D}_i^{\text{ts}} = \{ (x_1^i, y_1^i), \dots, (x_l^i, y_l^i) \}$$

multi-task learning: learn model with parameters θ^* that solves multiple tasks $\theta^* = \arg \max_{\theta} \sum_{i=1}^{\infty} \log p(\theta | \mathcal{D}_i)$

Outline

- Problem statement

- Meta-learning **algorithms**

- Black-box adaptation
- Optimization-based inference
- Non-parametric methods
- Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-reinforcement learning
- Challenges & frontiers

Qs: <u>slido.com/meta</u>

General recipe

How to *evaluate* a meta-learning algorithm the Omniglot dataset Lake et al. Science 2015

1623 characters from 50 different alphabets

Hebrew

Bengali

Greek

20 instances of each character

Proposes both few-shot discriminative & few-shot generative problems

Initial few-shot learning approaches w/ Bayesian models, non-parametrics Fei-Fei et al. '03 Lake et al. '11 Salakhutdinov et al. '12 Lake et al. '13

Cother datasets used for few-shot image recognition: MiniImagenet, CIFAR, CUB, CelebA, others

Futurama

. . .

many classes, few examples the "transpose" of MNIST statistics more reflective of the real world

General recipe

How to evaluate a meta-learning algorithm **5-way, 1-shot image classification** (Minilmagenet)

Given 1 example of 5 classes:

Can replace image classification with: regression, language generation, skill learning,

Classify new examples

General recipe

How to *design* a meta-learning algorithm

1. Choose a form of $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$

2. Choose how to optimize θ w.r.t. max-likelihood objective using $\mathcal{D}_{meta-train}$

Neural networks are good at inference.

Qs: <u>slido.com/meta</u>

Can we treat $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$ as an **inference** problem?

Outline

- Problem statement
- Meta-learning **algorithms**
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-reinforcement learning
- Challenges & frontiers

Qs: <u>slido.com/meta</u>

Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$

For now: Use deterministic (point estimate) $\phi_i = f_{\theta}(\mathcal{D}_i^{tr})$

Qs: slido.com/meta

(Bayes will come back later)

Train with standard supervised learning!

Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$

- 1. Sample task \mathcal{T}_i (or mini batch of tasks)
- 2. Sample disjoint datasets $\mathcal{D}_i^{\mathrm{tr}}, \mathcal{D}_i^{\mathrm{test}}$ from \mathcal{D}_i

Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$

Qs: <u>slido.com/meta</u>

 $\mathcal{D}_i^{ ext{tr}}$

1. Sample task \mathcal{T}_i (or mini batch of tasks) 2. Sample disjoint datasets $\mathcal{D}_i^{\text{tr}}, \mathcal{D}_i^{\text{test}}$ from \mathcal{D}_i 3. Compute $\phi_i \leftarrow f_{\theta}(\mathcal{D}_i^{\mathrm{tr}})$ 4. Update θ using $\nabla_{\theta} \mathcal{L}(\phi_i, \mathcal{D}_i^{\mathrm{test}})$

 $\mathcal{D}_i^{ ext{test}}$

Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$

Qs: <u>slido.com/meta</u>

Form of f_{θ} ?

- LSTM
- Neural turing machine (NTM)
- Self-attention
- 1D convolutions
- feedforward + average

Key idea: Train a neural network to represent $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$

Challenges

Outputting all neural net parameters does not seem scalable? Idea: Do not need to output all parameters of neural net, only sufficient statistics

Is there a way to infer **all parameters** in a scalable way? What if we treat it as an **optimization** procedure?

Qs: slido.com/meta

(Santoro et al. MANN, Mishra et al. SNAIL)

low-dimensional vector h_i represents contextual task information

$$\phi_i = \{h_i, \theta_g\}$$

general form: $y^{ts} = f_{\theta}(\mathcal{D}_i^{tr}, x^{ts})$

Outline

- Problem statement
- Meta-learning **algorithms**
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-reinforcement learning
- Challenges & frontiers

Qs: <u>slido.com/meta</u>

Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

 $\max_{\phi_i} \log p(\mathcal{D}_i^{\mathrm{tr}} | \phi_i) + \log p(\phi_i | \theta)$

Meta-parameters θ serve as a prior. What form of prior?

One successful form of prior knowledge: initialization for fine-tuning

Qs: <u>slido.com/meta</u>

Optimization-Based Inference

Fine-tuning [test-time] **Meta-learning** task i

Key idea: Over many tasks, learn parameter vector θ that transfers via fine-tuning

Qs: slido.com/meta

Finn et al., MAML

Optimization-Based Inference task i

parameter vector being meta-learned

optimal parameter vector for task i

Qs: slido.com/meta

Model-Agnostic Meta-Learning

Finn et al., MAML

Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

General Algorithm:

Amortized approach Optimization-based approach 1. Sample task \mathcal{T}_i (or mini batch of tasks) 2. Sample disjoint datasets $\mathcal{D}_i^{\text{tr}}, \mathcal{D}_i^{\text{test}}$ from \mathcal{D}_i 3. Compute $\phi_i \leftarrow f_{\theta}(\mathcal{D}_i^{\text{tr}})$ Optimize $\phi_i \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\text{tr}})$ 4. Update θ using $\nabla_{\theta} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{test}})$

Qs: slido.com/meta

—> brings up **second-order** derivatives (more on this later)

Optimization vs. Black-Box Adaptation Black-box adaptation Model-agnostic meta-learning general form: $y^{ts} = f_{\theta}(\mathcal{D}_i^{tr}, x^{ts})$

Note: Can mix & match components of computation graph

Ravi & Larochelle ICLR '17

Qs: <u>slido.com</u>This computation graph view of meta-learning will come back again!

$$y^{\text{ts}} = f_{\text{MAML}}(\mathcal{D}_i^{\text{tr}}, x^{\text{ts}})$$
$$= f_{\phi_i}(x^{\text{ts}})$$

where $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\mathrm{tr}})$ **MAML** can be viewed as **computation graph**, with embedded gradient operator

Learn initialization but replace gradient update with learned network

where $\phi_i = \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}_i^{\mathrm{tr}})$ $f(\theta, \mathcal{D}_{i}^{\mathrm{tr}}, \nabla_{\theta}\mathcal{L})$

(actually precedes MAML)

Optimization vs. Black-Box Adaptation

Black-box adaptation $y^{\mathrm{ts}} = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$

Does this structure come at a cost?

For a sufficiently deep f,

Assumptions:

- nonzero lpha—
- -
- datapoints in $\mathcal{D}_i^{\mathrm{tr}}$ are unique

Why is this interesting? MAML has benefit of inductive bias without losing expressive power. Qs: slido.com/meta

Optimization-based (MAML) $y^{\mathrm{ts}} = f_{\mathrm{MAML}}(\mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}})$

MAML function can approximate any function of $\, \mathcal{D}_i^{\mathrm{tr}}, x^{\mathrm{ts}} \,$ Finn & Levine, ICLR 2018

loss function gradient does not lose information about the label
Probabilistic Interpretation of Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

Qs: slido.com/meta MAML approximates hierarchical Bayesian inference. Grant et al. ICLR '18

Meta-parameters θ serve as a prior. One form of prior knowledge: **initialization** for **fine-tuning**

 $= \log \prod_{i=1}^{i} \int p(\mathcal{D}_{i}|\phi_{i}) p(\phi_{i}|\theta) d\phi_{i} \quad \text{(empirical Bayes)}$

 $\approx \log \prod_{i} p(\mathcal{D}_{i} | \hat{\phi}_{i}) p(\hat{\phi}_{i} | \theta)$ MAP estimate

Gradient descent with **early stopping = MAP inference** under **Gaussian prior** with mean at initial parameters [Santos '96] (exact in linear case, approximate in nonlinear case)

Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

Other forms of priors?

Gradient-descent with explicit Gaussian price

Closed-form or convex optimization on learned features

ridge regression, logistic regression support vector machine Bertinetto et al. R2-D2 '19 Lee et al. MetaOptNet '19

Qs: slido.com/meta

Meta-parameters θ serve as a prior. One form of prior knowledge: **initialization** for **fine-tuning** *Gradient-descent + early stopping (MAML):* implicit Gaussian prior $\phi \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta, \mathcal{D}^{tr})$

or
$$\phi \leftarrow \min_{\phi'} \mathcal{L}(\phi', \mathcal{D}^{tr}) + \frac{\lambda}{2} ||\theta - \phi'||^2$$

Rajeswaran et al. implicit MAML '19

Bayesian linear regression on learned features Harrison et al. ALPaCA '18

Current **SOTA** on few-shot image classification

Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

Challenges

How to choose architecture that is effective for inner gradient-step?

Idea: Progressive neural architecture search + MAML

- finds highly non-standard architecture (deep & narrow)

Minilmagenet, 5-way 5-shot

Qs: slido.com/meta

(Kim et al. Auto-Meta)

- different from architectures that work well for standard supervised learning

MAML, basic architecture: 63.11%

MAML + AutoMeta: **74.65%**

Optimization-Based Inference

Key idea: Acquire ϕ_i through optimization.

Challenges

Second-order meta-optimization can exhibit instabilities.

Idea: [Crudely] approximate $\frac{d\phi_i}{d\theta}$ as identity (Finn et al. first-order MAML, Nichol et al. Reptile) Idea: Automatically learn inner vector learning rate, tune outer learning rate

Idea: Optimize only a subset of the parameters in the inner loop

Idea: Decouple inner learning rate, BN statistics per-step (Antoniou et al. MAML++)

Idea: Introduce context variables for increased expressive power.

Qs: <u>slido.c</u>**Takeaway**: a range of simple tricks that can help optimization significantly

(Li et al. Meta-SGD, Behl et al. AlphaMAML)

(Zhou et al. DEML, Zintgraf et al. CAVIA)

(Finn et al. bias transformation, Zintgraf et al. CAVIA)

Outline

- Problem statement
- Meta-learning **algorithms**
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-reinforcement learning
- Challenges & frontiers

In low data regimes, **non-parametric** methods are simple, work well.

During **meta-training**: still want to be parametric

Qs: slido.com/meta

So far: Learning parametric models.

During **meta-test time**: few-shot learning <-> low data regime

- Can we use **parametric meta-learners** that produce effective **non-parametric learners**?
 - Note: some of these methods precede parametric approaches

Key Idea: Use non-parametric learner.

training data $\mathcal{D}_i^{\mathrm{tr}}$

- pixel space, l₂ distance?
- Learn to compare using data!

Qs: <u>slido.com/meta</u>

test datapoint x^{ts}

- Compare test image with training images
- In what space do you compare? With what distance metric?

Key Idea: Use non-parametric learner.

Qs: <u>slido.com/meta</u>

train Siamese network to predict whether or not two images are the same class

Key Idea: Use non-parametric learner.

Qs: <u>slido.com/meta</u>

train Siamese network to predict whether or not two images are the same class

Key Idea: Use non-parametric learner.

Qs: <u>slido.com/meta</u>

train Siamese network to predict whether or not two images are the same class

Key Idea: Use non-parametric learner.

Meta-test time: compare image $\mathbf{X}_{ ext{test}}$ to each image in ${\mathcal{D}}_i^{ ext{tr}}$

Meta-training: 2-way classification Qs: <u>slido.co</u>..., <u>Meta-test</u>: N-way classification

train Siamese network to predict whether or not two images are the same class

Can we **match** meta-train & meta-test?

Key Idea: Use non-parametric learner.

Can we make meta-train & meta-test match?

Weighed nearest neighbors in learned embedding space

$\hat{y} = \sum_{i=1}^{k} a(\hat{x}, x_i) y_i$

What if >1 shot?

Can we aggregate class information to create a prototypical embedding?

Vinyals et al. Matching Networks, NeurIPS '16

Key Idea: Use non-parametric learner.

(a) Few-shot

Qs: <u>slido.com/meta</u>

$$\mathbf{c}_{k} = \frac{1}{|\mathcal{D}_{i}^{\mathrm{tr}}|} \sum_{(x,y)\in\mathcal{D}_{i}^{\mathrm{tr}}} f_{\theta}(x)$$
$$p_{\theta}(y=k|x) = \frac{\exp(-d(f_{\theta}(x),\mathbf{c}_{k}))}{\sum_{k'}\exp(-d(f_{\theta}(x),\mathbf{c}_{k'}))}$$

d: Euclidean, or cosine distance

Snell et al. Prototypical Networks, NeurIPS '17

So far: Siamese networks, matching networks, prototypical networks Embed, then nearest neighbors.

Challenge

Idea: Learn non-linear relation module on embeddings

- What if you need to reason about more complex relationships between datapoints?
 - Idea: Learn infinite mixture of prototypes.

Idea: Perform message passing on embeddings

Garcia & Bruna, GNN

Amortized vs. Optimization vs. Non-Parametric

Computation graph perspective

Black-box amortized

Optimization-based

 $y^{ ext{ts}} = f_{ ext{MAML}}(\mathcal{D})$ $= f_{\phi_i}(x^{\mathrm{ts}})$ where $\phi_i = \theta$ -

 $[\mathcal{D}^{va}]$

 \mathcal{D}^{ti}

- Note: (again) Can mix & match components of computation graph Gradient descent on relation net embedding.
- Both condition on data & run gradient descent.

Jiang et al. CAML '19

Qs: <u>slido.com/meta</u>

Non-parametric

$$egin{aligned} \mathcal{D}_{i}^{ ext{tr}}, x^{ ext{ts}}) & y^{ ext{ts}} = f_{ ext{PN}}(\mathcal{D}_{i}^{ ext{tr}}, x^{ ext{ts}}) \ & = ext{softmax}\left(-d(f_{ heta}(x), c_{k}) - lpha
abla_{ heta} \mathcal{L}(heta, \mathcal{D}_{i}^{ ext{tr}}) & ext{where } c_{k} = rac{1}{|\mathcal{D}_{i}^{ ext{tr}}|} \sum_{(x,y) \in \mathcal{D}_{i}^{ ext{tr}}} f_{i} \end{aligned}$$

MAML, but initialize last layer as ProtoNet during meta-training

Triantafillou et al. Proto-MAML '19

Intermediate Takeaways

Black-box amortized

- + easy to combine with variety of learning problems (e.g. SL, RL)
- challenging optimization (no inductive bias at the initialization) - often data-inefficient
- model & architecture intertwined

Optimization-based

- + handles varying & large K well + structure lends well to out-ofdistribution tasks

- second-order optimization

Generally, well-tuned versions of each perform **comparably** on existing few-shot benchmarks!

Qs: slido.com/meta

Non-parametric

- + simple
- + entirely **feedforward**
- + computationally fast & easy to optimize
- harder to generalize to varying K
- hard to scale to very large K
- so far, limited to classification

Outline

- Problem statement

- Meta-learning algorithms

- Black-box adaptation
- Optimization-based inference
- Non-parametric methods
- Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-**reinforcement** learning
- Challenges & frontiers

I can't believe it's not Bayesian

✓ Wearing Hat,

✓ Smiling,

Young

QS: S

ta

✓ Smiling, Wearing Hat, × Young

× Smiling, Wearing Hat, Young

Recall parametric approaches: Use **deterministic** $p(\phi_i | \mathcal{D}_i^{tr}, \theta)$ (i.e. a point estimate)

Why/when is this a problem?

Few-shot learning problems may be *ambiguous*. (even with prior)

> Can we learn to *generate hypotheses* about the underlying function? i.e. sample from $p(\phi_i | \mathcal{D}_i^{\mathrm{tr}}, \theta)$

- safety-critical few-shot learning (e.g. medical imaging) Important for:
 - learning to actively learn
 - learning to **explore** in meta-RL

Active learning w/ meta-learning: Woodward & Finn '16, Konyushkova et al. '17, Bachman et al. '17

Meta-learning with ambiguity

 $\theta \sim p(\theta)$ $\phi_i \sim p(\phi_i | \theta)$

Goal: sampl

Black-Box Amortized Inference Amortized Variational Inference

$$\mathcal{D}_{i}^{\mathrm{tr}} \longrightarrow \text{neural net} \longrightarrow q(h|\mathcal{D}_{i}^{\mathrm{tr}}) \quad h \longrightarrow \prod_{x^{\mathrm{ts}}}^{y^{\mathrm{ts}}}$$

Simple idea: NN produces Gaussian distribution over h_i. Train with amortized variational inference.

(Kingma & Welling VAE '13)

Qs: <u>slido.com/me</u> What about Bayesian optimization-based meta-learning?

$$\begin{split} & \log p(y_i^{\text{train}} | x_i^{\text{train}}, \phi_i) \\ & \log p(y_i^{\text{test}} | x_i^{\text{test}}, \phi_i) \\ & \text{e } \phi_i \sim p(\phi_i | x_i^{\text{train}}, y_i^{\text{train}}, x_i^{\text{test}}) \end{split}$$

Output distribution over weights of last layer

Gordon et al. VERSA '19

Meta-learning with ambiguity

 $\theta \sim p(\theta)$

 $\log p(y_i^{\text{train}} | x_i^{\text{train}}, \phi_i)$ $\phi_i \sim p(\phi_i | \theta)$ $\log p(y_i^{\text{test}} | x_i^{\text{test}}, \phi_i)$ Goal: sample $\phi_i \sim p(\phi_i | x_i^{\text{train}}, y_i^{\text{train}}, x_i^{\text{test}})$

Model $p(\phi_i|\theta)$ as Gaussian Same amortized variational inference for training. (Ravi & Beatson '19) Amortized Bayesian Meta-Learning

Can we model **non-Gaussian posterior** over **all parameters**?

Qs: slido.com/meta

What about Bayesian optimization-based meta-learning?

Stein Variational Gradient (BMAML) Gradient-based inference on last layer only. Use SVGD to avoid Gaussian modeling assumption. Ensemble of MAMLs (EMAML)

(Kim et al. Bayesian MAML '18)

Sampling parameter vectors

$$\begin{split} \theta \sim p(\theta) &= \mathcal{N}(\mu_{\theta}, \Sigma_{\theta}) & \log p(y_i^{\text{train}} | x_i^{\text{train}}, \phi_i) \\ \phi_i \sim p(\phi_i | \theta) & \log p(y_i^{\text{test}} | x_i^{\text{test}}, \phi_i) \\ \text{Goal: sample } \phi_i \sim p(\phi_i | x_i^{\text{train}}, y_i^{\text{train}}) \\ & p(\phi_i | x_i^{\text{train}}, y_i^{\text{train}}) \propto \int p(\theta) p(\phi_i | \theta) \\ & \Rightarrow \text{this is completely intractable!} \\ \text{what if we knew } p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}})? \\ & \Rightarrow \text{now sampling is easy! just use} \end{split}$$

key idea: $p(\phi_i | \theta, x_i^{\text{train}}, y_i^{\text{train}}) \approx \delta(\hat{\phi}_i)$ this is **extremely** crude but **extremely** convenient!

(Santos '92, Grant et al. ICLR '18)

Qs: <u>slido.com/meta</u>

Training is harder. We use **amortized variational inference**.

Finn*, Xu* et al. Probabilistic MAML '18

PLATIPUS Probabilistic LATent model for Incorporating Priors and Uncertainty in few-Shot learning

Ambiguous 5-shot regression:

Deep Bayesian Meta-Learning: Further Reading

Edwards & Storkey, Towards a Neural Statistician. 2017

Black-box approaches:

Gordon et al., VERSA 2019 Garnelo et al. Conditional Neural Processes 2018

Optimization-based approaches:

Kim et al., Bayesian MAML. 2018 Xu et al., Probabilistic MAML. 2018 Ravi & Beatson., Amortized Bayesian Meta-Learning 2019

Outline

- Problem statement

- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-reinforcement learning
- Challenges & frontiers

Applications in computer vision few-shot image recognition human motion and pose prediction

see, e.g.: Vinyals et al. Matching Networks for One Shot **Learning**, and many many others

domain adaptation

Target Domains

see, e.g.: Li, Yang, Song, Hospedales. Learning to Generalize: Meta-Learning for Domain Adaptation.

see, e.g.: Shaban, Bansal, Liu, Essa, Boots. One-Shot Learning for Semantic Segmentation. Rakelly, Shelhamer, Darrell, Efros, Levine. Few-Shot Segmentation Propagation with Guided Networks. Dong, Xing. Few-Shot Semantic Segmentation with Prototype Learning.

see, e.g.: Gui et al. Few-Shot Human Motion Prediction via Meta-Learning. Alet et al. Modular Meta-Learning.

few-shot segmentation

Applications in image & video generation

few-shot image generation

see, e.g.: Liu, Huang, Mallya, Karras, Aila, Lehtinen, Kautz. Few-Shot see, e.g.: Reed, Chen, Paine, van den Oord, Eslami, Rezende, Vinyals, de Freitas. **Unsupervised Image-to-Image Translation.** Few-Shot Autoregressive Density Estimation. and many many others.

generation of novel viewpoints

see, e.g.: Gordon, Bronskill, Bauer, Nowozin, Turner. VERSA: Versatile and Efficient Few-Shot Learning. US:

few-shot image-to-image translation

generating talking heads from images

see, e.g.: Zakharov, Shysheya, Burkov, Lempitsky. Few-Shot Adversarial Learning of Realistic Neural Talking Head Models

One-Shot Imitation Learning

Goal: Given one demonstration of a new task, learn a policy meta-learning with supervised imitation learning

Black-box amortized inference

Duan et al. One-Shot Imitation Learning '17 James et al. Task-Embedded Control '18

Le Paine et al. One-Shot High Fidelity Imitation '19

Also: One-shot inverse RL (Xu et al. MandRIL '18, Gleave & Habryka '18), One-shot hierarchical imitation (Yu et al. '18)

Optimization-based inference Finn*, Yu* et al. Meta Imitation Learning '17 input demo (via teleoperation)

Learning to Learn from *Weak* Supervision input human demo resulting policy

Qs: <u>slido.com/meta</u>

Yu*, Finn*, Xie, Dasari, Zhang, Abbeel, Levine RSS '18

Learning to Learn from Weak Supervision

What if the weakly supervised loss is unavailable?

Qs: slido.com/meta

meta-test

weakly supervised

Yu*, Finn*, Xie, Dasari, Zhang, Abbeel, Levine RSS '18 Grant, Finn, Peterson, Abbott, Levine, **Darrell, Griffiths** NIPS CIAI Workshop '17

Meta-Learning for Language

Adapting to *new programs*

Meta Program Induction Learn new program from a few I/O examples. Devlin*, Bunel* et al. NeurIPS '17

Program Synthesis

Question:

How many CFL teams are from York College?

SQL:

COUNT CFL Team FROM CFLDraft WHERE College = "York"

Result:

Construct pseudo-tasks with relevance function Huang et al. NAACL '18

Qs: slido.com/meta

Adapting to *new languages*

Low-Resource Neural Machine Translation

w/o a lot of paired data? Gu et al. EMNLP '18

earn how to use a new word

Vinyals et al. Matching Networks, '16

Learning *new words*

One-Shot Language Modeling

from one example usage.

Adapting to *new personas*

Personalizing Dialogue Agents

Adapt dialogue to a persona with a few examples Lin*, Madotto* et al. ACL '19

Outline

- Problem statement

- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-**reinforcement** learning
- Challenges & frontiers

Why should we care about meta-RL?

Iteration 2000

RoboschoolHumanoid-v0

Mnih et al. '13

Schulman et al. '14 & '15

Qs: <u>slido.com/meta</u>

people can learn new skills extremely quickly

how?

we never learn from scratch!

Can we meta-learn reinforcement learning "algorithms" that are much more efficient?

50M

The reinforcement learning problem

Markov decision process S – state space \mathcal{A} – action space \mathcal{P} - transition function, i.e. $p(s_{t+1}|a_t, s_t) = \mathcal{P}$ r – reward function $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ $r(s_t, a_t)$ – reward $\pi_{\theta}(a|s)$ – policy with params θ $\theta^{\star} = \operatorname{ar}$

expectation under

Qs: slido.com/meta

- $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{P}, r\}$
- states $s \in \mathcal{S}$ (discrete or continuous)
- actions $a \in \mathcal{A}$ (discrete or continuous)

$$\mathcal{P}(s_t, a_t, s_{t+1})$$

$$\operatorname{rg} \max_{\theta} E_{\pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$
$$\pi_{\theta} \text{ and } \mathcal{P}$$

Andrey Markov

Richard Bellman

The reinforcement learning problem

$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}} \left[\sum_{t=0}^{T} r(s_t, a_t) \right]$$

$$\theta^{\star} = \arg\max_{\theta} E_{\pi_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right] \longleftarrow \text{ infin}$$

$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(s,a)} \left[r(s_t, a_t) \right]$$

$$\searrow p_{\theta}$$
stationary distribution
$$p_{\theta}$$

Qs: <u>slido.com/meta</u>

nite horizon, discounted return

$$\underbrace{(\mathbf{s}_1, \mathbf{a}_1, \dots, \mathbf{s}_T, \mathbf{a}_T)}_{\pi_{\theta}(\tau)} = p(\mathbf{s}_1) \prod_{t=1}^T \pi_{\theta}(\mathbf{a}_t | \mathbf{s}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$$

$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)} \left[R(\tau) \right]$$

Every RL algorithm in a nutshell

 $r_t \leftarrow r(s_t, a_t)$ $s_{t+1} \sim p(s_{t+1}|s_t, a_t)$

 $\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)} \left[R(\tau) \right]$

 s_{t+1}

pick $a_t \sim \pi_{\theta}(a_t | s_t)$

- ...directly, via policy gradients
- ...via value function or Q-function
- ...implicitly, via model $\hat{p}(s_{t+1}|s_t, a_t)$

Meta-learning so far...

learn θ such that $\phi_i = f_{\theta}(\mathcal{D}_i^{\mathrm{tr}})$ is good for $\mathcal{D}_i^{\mathrm{ts}}$

Probabilistic view:

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} \log p(\phi_i | \mathcal{D}_i^{\text{ts}})$$

where $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$

Deterministic view:

$$\theta^{\star} = \arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{ts}})$$

where $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$

Qs: <u>slido.com/meta</u>

 $\mathcal{D}_{\text{meta-train}} = \{ (\mathcal{D}_1^{\text{tr}}, \mathcal{D}_1^{\text{ts}}), \dots, (\mathcal{D}_n^{\text{tr}}, \mathcal{D}_n^{\text{ts}}) \}$ $\mathcal{D}_{i}^{\mathrm{tr}} = \{ (x_{1}^{i}, y_{1}^{i}), \dots, (x_{k}^{i}, y_{k}^{i}) \}$ $\mathcal{D}_{i}^{\text{ts}} = \{ (x_{1}^{i}, y_{1}^{i}), \dots, (x_{l}^{i}, y_{l}^{i}) \}$

The meta reinforcement learning problem

"Generic" learning (deterministic view):

$$\theta^{\star} = \arg\min_{\theta} \mathcal{L}(\theta, \mathcal{D}^{\mathrm{tr}})$$
$$= f_{\mathrm{learn}}(\mathcal{D}^{\mathrm{tr}})$$

Reinforcement learning:

$$\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)}[R(\tau)]$$
$$= f_{\mathrm{RL}}(\mathcal{M}) \qquad \mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{P}, r\}$$
$$\bigwedge_{\mathrm{MDP}}$$

"Generic" meta-learning (deterministic view):

$$\theta^{\star} = \arg\min_{\theta} \sum_{i=1}^{n} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{ts}})$$

where $\phi_i = f_{\theta}(\mathcal{D}_i^{\text{tr}})$

Meta-reinforcement learning:

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$
 \bigwedge
MDP for task *i*

The meta reinforcement learning problem

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

assumption: $\mathcal{M}_i \sim p(\mathcal{M})$

meta test-time:

sample $\mathcal{M}_{\text{test}} \sim p(\mathcal{M}), \text{ get } \phi_i = f_{\theta}(\mathcal{M}_{\text{test}})$

Qs: <u>slido.com/meta</u>

 $\{\mathcal{M}_1,\ldots,\mathcal{M}_n\}$

meta-training MDPs

Some examples:

Meta-RL with recurrent policies

 $\theta^{\star} = \arg\max_{\theta} \sum E_{\pi_{\phi_i}(\tau)}[R(\tau)]$ where $\phi_i = f_{\theta}(\mathcal{M}_i)$ r_t s_{t+1} \frown pick $a_t \sim \pi_{\theta}(a_t|s_t)$ use (s_t, a_t, s_{t+1}, r_t) to improve π_{θ}

main question: how to implement $f_{\theta}(\mathcal{M}_i)$?

what should $f_{\theta}(\mathcal{M}_i) \ do$?

1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \ldots, (s_T, a_T, s_{T+1}, r_T)\}$

2. (new in RL): choose how to interact, i.e. choose a_t meta-RL must also *choose* how to *explore*!

Meta-RL with recurrent policies

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

so... we just train an RNN policy? yes!

Qs: <u>slido.com/meta</u>

crucially, RNN hidden state is not reset between episodes!

Why recurrent policies learn to explore

Qs: slido.com/meta

- 1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \ldots, (s_T, a_T, s_{T+1}, r_T)\}$
- 2. (new in RL): choose how to interact, i.e. choose a_t meta-RL must also *choose* how to *explore*!

optimizing total reward over the entire **meta-**episode with RNN policy automatically learns to explore!

meta-episode

Meta-RL with recurrent policies

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

(a) Labryinth I-maze

Heess, Hunt, Lillicrap, Silver. Memory-based control with recurrent neural networks. 2015.

Qs: <u>slido.com/meta</u>

Wang, Kurth-Nelson, Tirumala, Soyer, Leibo, Munos, Blundell, Kumaran, Botvinick. Learning to Reinforcement Learning. 2016.

(b) Illustrative Episode

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2: Fast Reinforcement Learning via Slow Reinforcement Learning. 2016.

Architectures for meta-RL

Reinforcement Learning a_{t-1} a_{t-2} a_{t-3} Actions attention + temporal convolution Mishra, Rohaninejad, Chen, Abbeel. A Simple **Neural Attentive Meta-Learner.** \mathbf{O}_{t-3} \mathbf{O}_{t-2} \mathbf{O}_{t-1} \mathbf{O}_{t} (Observations, Actions, \mathbf{a}_{t-3} \mathbf{a}_{t-2} \mathbf{a}_{t-1} Rewards) r_{t-3} r_{t-2} r_{t-1}

Qs: <u>slido.com/meta</u>

standard RNN (LSTM) architecture

Duan, Schulman, Chen, Bartlett, Sutskever, Abbeel. RL2: Fast Reinforcement Learning via Slow Reinforcement Learning. 2016.

parallel permutation-invariant context encoder

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-**Reinforcement learning via Probabilistic Context Variables.**

Meta-RL as an optimization problem

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

what if $f_{\theta}(\mathcal{M}_i)$ is *itself* an RL algorithm?

$$f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$$

requires interacting with \mathcal{M}_i to estimate $\nabla_{\theta} E_{\pi_{\theta}}[R(\tau)]$

Qs: slido.com/meta

1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \ldots, (s_T, a_T, s_{T+1}, r_T)\}$

> standard RL: $\theta^{\star} = \arg\max_{\theta} E_{\pi_{\theta}(\tau)}[R(\tau)]$ $J(\theta)$ $\theta^{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta^k} J(\theta^k)$

this is model-agnostic meta-learning (MAML) for RL!

MAML for RL in pictures

MAML for RL in videos after 1 gradient step after MAML training (forward reward)

— meta-learning ---- learning/adaptation H $end \nabla \mathcal{L}_3$ $abla \mathcal{L}_2$ $- \theta_3^*$ $\nabla \mathcal{L}_1$ θ_1^* Qs: <u>slid</u> $\bullet heta_2^*$

— meta-learning ---- learning/adaptation

after 1 gradient step (backward reward)

More on MAML/gradient-based meta-learning for RL

Better MAML meta-policy gradient estimators:

- Estimator.
- Rothfuss, Lee, Clavera, Asfour, Abbeel. ProMP: Proximal Meta-Policy Search.

Improving exploration:

- Gupta, Mendonca, Liu, Abbeel, Levine. Meta-Reinforcement Learning of Structured Exploration Strategies.
- **Meta-Reinforcement Learning.**

Hybrid algorithms (not necessarily gradient-based):

- Houthooft, Chen, Isola, Stadie, Wolski, Ho, Abbeel. Evolved Policy Gradients.
- **Baldwin Effect.**

Qs: slido.com/meta

• Foerster, Farquhar, Al-Shedivat, Rocktaschel, Xing, Whiteson. DiCE: The Infinitely Differentiable Monte Carlo

Stadie*, Yang*, Houthooft, Chen, Duan, Wu, Abbeel, Sutskever. Some Considerations on Learning to Explore via

Fernando, Sygnowski, Osindero, Wang, Schaul, Teplyashin, Sprechmann, Pirtzel, Rusu. Meta-Learning by the

Meta-RL as... partially observed RL?

First: a quick primer on **partially observed** Markov decision processes (POMDPs)

 $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{D}, \mathcal{P}\}, \mathcal{E}, r\}$

observations $o \in \mathcal{O}$ (discrete or continuous) – observation space \mathcal{O}

 \mathcal{E} – emission probability $p(o_t|s_t)$

Qs: slido.com/meta

```
policy must act on observations o_t!
\pi_{\theta}(a|o)
```

typically requires *either*:

 \mathbf{S}_3

explicit state estimation, i.e. to estimate $p(s_t|o_{1:t})$ policies with memory

learning a task = inferring zfrom context $(s_1, a_1, s_2, r_1), (s_2, a_2, s_3, r_2), \dots$

Qs: slido.com/meta

key idea: solving the POMDP $\mathcal{\tilde{M}}$ is equivalent to meta-learning!

this is just a POMDP!

before: $\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{P}, r\}$

now: $\tilde{\mathcal{M}} = \{\tilde{\mathcal{S}}, \mathcal{A}, \tilde{\mathcal{O}}, \tilde{\mathcal{P}}, \mathcal{E}, r\}$

$$\tilde{\mathcal{S}} = \mathcal{S} \times \mathcal{Z} \qquad \tilde{s} = (s, z)$$

$$\tilde{\mathcal{O}} = \mathcal{S} \qquad \qquad \tilde{o} = s$$

Meta-RL as... partially observed RL?

 $\pi_{\theta}(a|s,z)$ encapsulates information policy needs to solve current task

learning a task = inferring zfrom context $(s_1, a_1, s_2, r_1), (s_2, a_2, s_3, r_2), \dots$

exploring via posterior sampling with latent context

$$1. \text{ sample } z \sim \hat{p}(z_t | s_{1:t}, a_{1:t}, r_{1:t}) \longleftarrow \text{(e.g.}$$

2. act according to $\pi_{\theta}(a|s, z)$ to collect more data

Qs: slido.com/meta

this is just a POMDP!

typically requires *either*:

explicit state estimation, i.e. to estimate $p(s_t|o_{1:t})$

policies with memory

need to estimate $p(z_t|s_{1:t}, a_{1:t}, r_{1:t})$

some approximate posterior ., variational)

act as though z was correct!

this is not optimal! why?

but it's pretty good, both in theory and in practice!

See, e.g. Russo, Roy. Learning to Optimize via Posterior Sampling.

Variational inference for meta-RL

policy: $\pi_{\theta}(a_t|s_t, z_t)$

inference network: $q_{\phi}(z_t|s_1, a_1, r_1, \ldots, s_t, a_t, r_t)$

$$\begin{aligned} (\theta,\phi) &= \arg\max_{\theta,\phi} \frac{1}{N} \sum_{i=1}^{n} E_{z\sim q_{\phi},\tau\sim\pi_{\theta}} [R_{i}(\tau) - D_{\mathrm{KL}}] \\ & \swarrow \\ & \texttt{maximize post-update reward} \\ & \texttt{(same as standard meta-RL)} \end{aligned}$$

conceptually very similar to RNN meta-RL, but with stochastic z

stochastic z enables exploration via posterior sampling

Qs: slido.com/meta

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables. ICML 2019.

Specific instantiation: PEARL

policy: $\pi_{\theta}(a_t|s_t, z_t)$

inference network: $q_{\phi}(z_t|s_1, a_1, r_1, \ldots, s_t, a_t, r_t)$

$$(\theta, \phi) = \arg \max_{\theta, \phi} \frac{1}{N} \sum_{i=1}^{n} E_{z \sim q_{\phi}, \tau \sim \pi_{\theta}} [R_i(\tau) - D_{\mathrm{KL}}]$$

perform maximization using soft actor-critic (SAC), state-of-the-art off-policy RL algorithm

Qs: <u>slido.com/meta</u>

Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables. ICML 2019.

 $(q(z|\ldots)||p(z))]$

References on meta-RL, inference, and POMDPs

- Rakelly*, Zhou*, Quillen, Finn, Levine. Efficient Off-Policy Meta-Reinforcement learning via Probabilistic Context Variables. ICML 2019.
- Zintgraf, Igl, Shiarlis, Mahajan, Hofmann, Whiteson. Variational Task Embeddings for Fast Adaptation in Deep Reinforcement Learning.
- Humplik, Galashov, Hasenclever, Ortega, Teh, Heess. Meta reinforcement learning as task inference.

Qs: <u>slido.com/meta</u>

The three perspectives on meta-RL

Perspective 1: just RNN it

Perspective 2: bi-level optimization

 $f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$

MAML for RL

Perspective 3: it's an inference problem! $\pi_{\theta}(a|s, z) \qquad z_t \sim p(z_t|s_{1:t}, a_{1:t}, r_{1:t})$ everything needed to solve task Qs: slido.com/meta

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

what should $f_{\theta}(\mathcal{M}_i) \ do$?

- 1. improve policy with experience from \mathcal{M}_i $\{(s_1, a_1, s_2, r_1), \ldots, (s_T, a_T, s_{T+1}, r_T)\}$
- 2. (new in RL): choose how to interact, i.e. choose a_t meta-RL must also *choose* how to *explore*!

The three perspectives on meta-RL

Perspective 1: just RNN it

Perspective 2: bi-level optimization

 $f_{\theta}(\mathcal{M}_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$

MAML for RL

Perspective 3: it's an inference problem! $\pi_{\theta}(a|s,z)$ $z_t \sim p(z_t|s_{1:t}, a_{1:t}, r_{1:t})$ everything needed to solve task Qs: <u>slido.com/meta</u>

- + conceptually simple
- + relatively easy to apply
- vulnerable to meta-overfitting
- challenging to optimize in practice
- + good extrapolation ("consistent")
- + conceptually elegant
- complex, requires many samples
- + simple, effective exploration via posterior sampling
- + elegant reduction to solving a special POMDP
- vulnerable to meta-overfitting
- challenging to optimize in practice

But they're not that different!

Qs: <u>slido.com/meta</u>

just a particular architecture choice for these

Additional Topics in Meta-RL

Qs: <u>slido.com/meta</u>

 $\theta^{\star} = \arg \max_{\theta} E_{\pi_{\theta}(\tau)} \left[R(\tau) \right]$

short sketch of model-based RL: 1. collect data \mathcal{B} 2. use \mathcal{B} to get $\hat{p}(s_{t+1}|s_t, a_t)$ 3. use $\hat{p}(s_{t+1}|s_t, a_t)$ to plan a

...via value function or Q-function

...implicitly, via model $\hat{p}(s_{t+1}|s_t, a_t)$

why?

+ requires much less data vs model-free

+ a bit different due to model

+ can adapt extremely quickly!

example task: ant with broken leg

nice idea, but how much can we really adapt in just – one (or a few) step(s)?

Qs: <u>slido.com/meta</u>

non-adaptive method:

1. collect data
$$\mathcal{B} = \{s_i, a_i, s'_i\}$$

2. train
$$d_{\theta}(s, a) \to s'$$
 on \mathcal{B}

3. use d_{θ} to optimize actions

$$a_t, \dots, a_{t+k} = \arg \max_{a_t, \dots, a_{t+k}} \sum_{\tau=t}^{t+k} r(s_\tau, a_\tau)$$

s.t. $s_{t+1} = d_\theta(s_t, a_t)$

adaptive method:

1. take one step, get
$$\{s, a, s'\}$$

2. $\theta \leftarrow \theta - \alpha \nabla_{\theta} || d_{\theta}(s, a) - s' ||^2$
3. use d_{θ} to optimize a_t, \ldots, a_{t+k} , take a_t

a few episodes

meta-training time

meta-test time

example task: ant with broken leg

See also:

Saemundsson, Hofmann, Deisenroth. Meta-Reinforcement Learning with Latent Variable Gaussian Processes. Nagabandi, Finn, Levine. Deep Online Learning via Meta-Learning: Continual Adaptation for Model-Based RL.

Qs: <u>slido.com/meta</u>

Nagabandi^{*}, Clavera^{*}, Liu, Fearing, Abbeel, Levine, Finn. Learning to Adapt in Dynamic, Real-World Environments Through Meta-Reinforcement Learning. ICLR 2019.

meta-test time

adaptive method:

- 1. take one step, get $\{s, a, s'\}$
 - 2. $\theta \leftarrow \theta \alpha \nabla_{\theta} \| d_{\theta}(s, a) s' \|^2$
 - 3. use d_{θ} to optimize a_t, \ldots, a_{t+k} , take a_t

(no adaptation)

Meta-RL and emergent phenomena

Humans and animals seemingly learn behaviors in a variety of ways:

- > Highly efficient but (apparently) model-free RL
- > Episodic recall
- ➤ Model-based RL
- > Causal inference
- > etc.

Perhaps each of these is a separate "algorithm" in the brain

But maybe these are all emergent phenomena resulting from meta-RL?

meta-RL gives rise to episodic learning

Ritter, Wang, Kurth-Nelson, Jayakumar, Blundell, Pascanu, Botvinick. Been There, Done That: Meta-Learning with **Episodic Recall.**

Wang, Kurth-Nelson, Kumaran, Tirumala, Soyer, Leibo, Hassabis, Botvinick. Prefrontal Cortex as a Meta-**Reinforcement Learning System.**

model-free meta-RL gives rise to model-based adaptation

Dasgupta, Wang, Chiappa, Mitrovic, Ortega, Raposo, Hughes, Battaglia, Botvinick, Kurth-Nelson. Causal **Reasoning from Meta-Reinforcement Learning.**

Contextual policies and meta-learning

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\phi_i}(\tau)}[R(\tau)]$$

where $\phi_i = f_{\theta}(\mathcal{M}_i)$

in meta-RL, the *context* is inferred from experience from \mathcal{M}_i in multi-task RL, the context is typically given

 ϕ : stack location Qs: <u>slido.com/meta</u>

 ϕ : walking direction

$$\theta^{\star} = \arg \max_{\theta} \sum_{i=1}^{n} E_{\pi_{\theta}}[R(\tau)]$$

$$\pi_{\theta}(a_t | s_t, s_1, a_1, r_1, \dots, s_{t-1}, a_{t-1}, r_{t-1})$$

context used to infer whatever we need to solve \mathcal{M}_i i.e., z_t or ϕ_i (which are really the same thing)

 $\pi_{\theta}(a_t|s_t, \phi_i)$ "context"

 ϕ : where to hit puck

Outline

- Problem statement

- Meta-learning algorithms
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-**reinforcement** learning
- Challenges & frontiers

Qs: <u>slido.com/meta</u>

Let's Talk about Meta-Overfitting

- Meta learning requires task distributions
- When there are too few meta-training tasks, we can meta-overfit
- Specifying task distributions is hard!
- What can we do?

Qs: slido.com/meta

after MAML training

after 1 gradient step

Which algorithms meta-overfit less?

black-box adaptation

+ simple and flexible models

- relies **entirely** on extrapolation of learned adaptation procedure

Qs: slido.com/meta

Finn. Learning to Learn with Gradients. PhD thesis, 2019.

optimization-based

non-parametric

+ at worst just gradient descent

- pure gradient descent is not efficient without benefit of good initialization

+ at worst just nearest neighbor

- does not adapt all parameters of metric on new data (might be nearest neighbor in very bad space)
- **Definition:** a consistent meta-learner will converge to a (locally) optimal solution on any new task, regardless of meta-training

Empirical Extrapolation?

task variability

Finn & Levine ICLR '18

What else can we do?

- When there are too few meta-training tasks, we can meta-overfit
- Specifying task distributions is hard!
- Can we propose new tasks automatically?

Qs: slido.com/meta

Definition: unsupervised meta-learning refers to meta-learning algorithms that learn to solve tasks efficiently, without using hand-specified labels during meta-training

Example: stagewise unsupervised meta-learning

each image: point in \mathbb{R}^n

Clustering to Automatically Construct Tasks for Unsupervised Meta-Learning (CACTUs)

Qs: slido.com/meta

Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning. ICLR 2019

some proposed tasks Gupta, Eysenbach, Finn, Levine. Unsupervised Meta-Learning for Reinforcement Learning. Eysenbach, Gupta, Ibarz, Levine. Diversity is All You Need.

More on unsupervised meta-learning

- Unsupervised meta-RL: Gupta, Eysenbach, Finn, Levine. Unsupervised Meta-Learning for Reinforcement Learning.
- Unsupervised meta-few-shot classification: Hsu, Levine, Finn. Unsupervised Learning via Meta-Learning.
- Unsupervised meta-few-shot classification: Khodadadeh, Boloni, Shah.
 Unsupervised Meta-Learning for Few-Shot Image and Video Classification.
- Using supervised meta-learning to learn unsupervised learning rules: Metz, Maheswaranathan, Cheung, Sohl-Dickstein. Meta-Learning Update Rules for Unsupervised Representation Learning.
- Using supervised meta-learning to learn semi-supervised learning rules: Ren, Triantafillou, Ravi, Snell, Swersky, Tenenbaum, Larochelle, Zemel. Meta-Learning for Semi-Supervised Few-Shot Classification.

Qs: <u>slido.com/meta</u>

Memorization

Related to meta-overfitting, but subtly different. Computation graph view: $y^{ts} = f_{\theta}(\mathcal{D}_i^{tr}, x^{ts})$

Examples

Meta-training tasks: Cat/dog classifier. **Goal**: Learn to quickly recognize a new breed as a cat. Learn single classifier that doesn't adapt.

Qs: slido.com/meta

What will happen if the task data isn't strictly needed to learn the task?

Meta-training tasks: Grasping different objects. **Goal**: Learn to quickly grasp a new object. Memorize how to grasp the training objects.

The tasks need to be **mutually exclusive**.

- i.e. not possible to learn single function to learn all tasks
- What you want the learner to glean from the data must be not present in x.

Challenge: can we learn to trade off information from the data

vs. **the input** based on amount of data
What task information should be in the input vs. data?

So far: The input contains **no** information about the task.

For broad meta-RL task distributions,

exploration becomes exceedingly challenging.

One option: Provide demonstration (to illustrate the task goal) + trials

Qs: slido.com/meta

Zhou et al. Watch-Try-Learn: Meta-Learning Behavior from Demonstrations and Rewards, '19 **Other options**: language instruction?, goal image?, video tutorial?

The Ultimate Goal

Meta-Learning

Given i.i.d. task distribution, learn a new task efficiently

More realistically:

learn learn learn learn learn learn learn

slow learning

Initial work: Finn*, Rajeswaran* et al. Online Meta-Learning ICML '19

Outline

- Problem statement
- Meta-learning **algorithms**
 - Black-box adaptation
 - Optimization-based inference
 - Non-parametric methods
 - Bayesian meta-learning
- Meta-learning applications

— 5 min break —

- Meta-**reinforcement** learning
- Challenges & frontiers

Thank you!

Questions?