

Bayesian Optimization and Meta-Learning

Frank Hutter

University of Freiburg & Bosch Center for Artificial Intelligence fh@cs.uni-freiburg.de

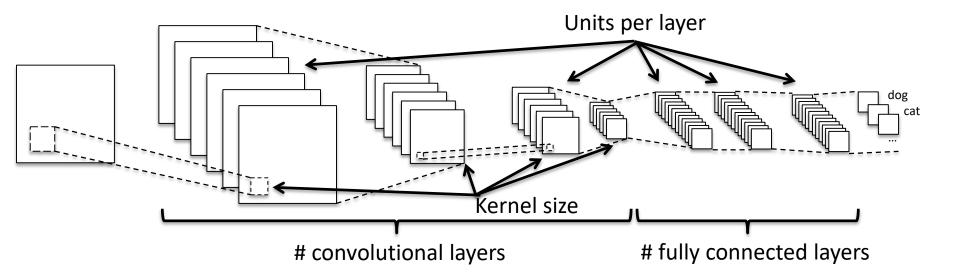
Slides available at <u>http://bit.ly/metalearn</u>; all references are clickable hyperlinks

One Problem of Deep Learning

Performance is very **sensitive** to **many hyperparameters**

Architectural hyperparameters

UNI FREIBURG



- Optimization: algorithm, learning rate initialization & schedule, momentum, batch sizes, batch normalization, ...
- Regularization: dropout rates, weight decay, data augment., ...

→ Easily 20-50 design decisions

Optimizing Hyperparameters Matters a Lot

UNI FREIBURG Improvements in the state of the art in many applications:

٩	Auto-Augment	Dataset	GPU	Best published	Our results
	[Cubuk et al, arXiv 2018]		hours	results	
	– Search space:	CIFAR-10	5000	2.1	1.5
	•	CIFAR-100	0	12.2	10.7
	Combinations	SVHN	1000	1.3	1.0
	of translation,	Stanford Cars	0	5.9	5.2
	rotation & shearing	ImageNet	15000	3.9	3.5

- AlphaGO [Chen et al, 2018]
 - E.g., prior to the match with Lee Sedol: tuning increased win-rate from 50% to 66.5% in self-play games
 - Tuned version was deployed in the final match; many previous improvements during development based on tuning
- Neural language models [Melis et al, ICLR 2018]
- Deep RL is very sensitive to hyperparams [Henderson et al, AAAI 18]

1. Blackbox Bayesian Hyperparameter Optimization

- 2. Beyond Blackbox: Speeding up Bayesian Optimization
- 3. Hyperparameter Importance Analysis
- 4. Case Studies

Based on: Feurer & Hutter: Chapter 1 of the AutoML book: Hyperparameter Optimization

Definition: Hyperparameter Optimization (HPO)

Let

UNI FREIBURG

- $oldsymbol{\lambda}$ be the hyperparameters of a ML algorithm A with domain $oldsymbol{\Lambda}$,
- $\mathcal{L}(A_{\lambda}, D_{train}, D_{valid})$ denote the loss of A, using hyperparameters λ trained on D_{train} and evaluated on D_{valid} .

The hyperparameter optimization (HPO) problem is to find a hyperparameter configuration λ^* that minimizes this loss:

 $\boldsymbol{\lambda}^* \in \operatorname*{arg\,min}_{\boldsymbol{\lambda} \in \boldsymbol{\Lambda}} \mathcal{L}(A_{\boldsymbol{\lambda}}, D_{train}, D_{valid})$

- Continuous
 - Example: learning rate
- Integer

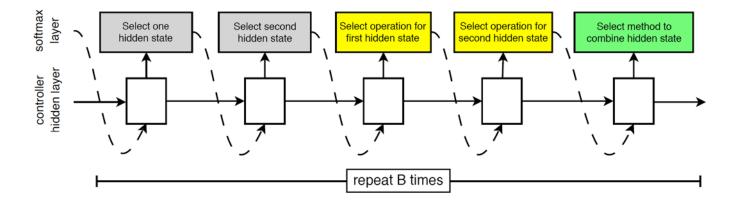
- Example: #filters
- Categorical
 - Finite domain, unordered
 - Example 1: activation function ∈ {ReLU, Leaky ReLU, tanh}
 - Example 2: operator ∈ {conv3x3, separable conv3x3, max pool, ...}
 - Special case: binary

- Conditional hyperparameters B are only active if their "parent" hyperparameters A are set a certain way
 - Example 1:

- A = choice of optimizer (Adam or SGD)
- B = Adam's second momentum hyperparameter
 - only active if A=Adam
- Example 2:
 - A = # layers
 - B = operation in layer k (conv3x3, separable conv3x3, max pool, ...)
 - only active if $A \ge k$

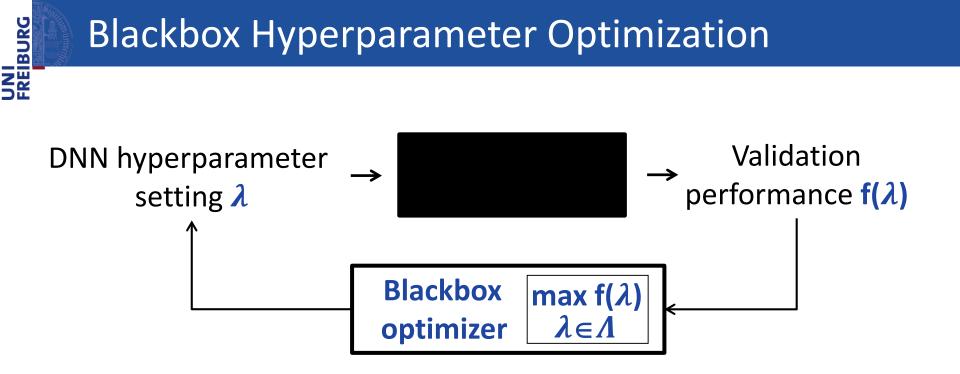
NAS as Hyperparameter Optimization

- We can rewrite many NAS problems as HPO problems
- E.g., cell search space by <u>Zoph et al [CVPR 2018]</u>



- 5 categorical choices for Nth block:

- 2 categorical choices of hidden states, each with domain {0, ..., N-1}
- 2 categorical choices of operations
- 1 categorical choice of combination method
- \rightarrow Total number of hyperparameters for the cell: 5B (with B=5 by default)

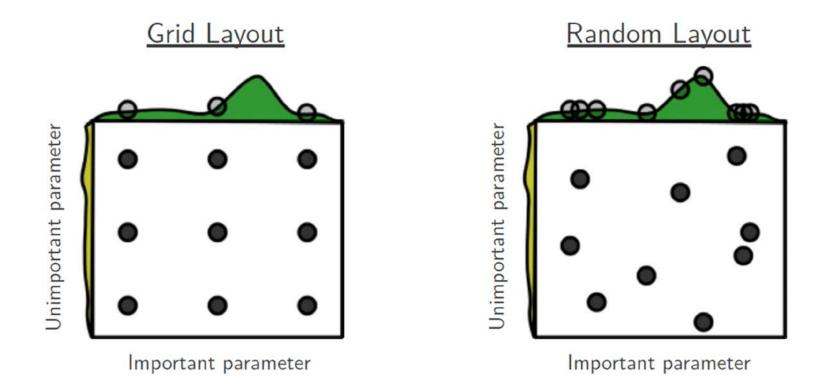


The blackbox function is expensive to evaluate
 → sample efficiency is important

Grid Search and Random Search

Both completely uninformed

- Random search handles unimportant dimensions better
- Random search is a useful baseline



Population of configurations

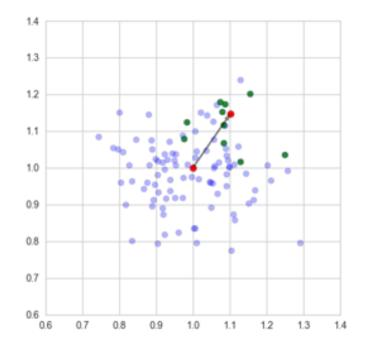
- Maintain diversity

UNI FREIBURG

- Improve fitness of population

• E.g, evolutionary strategies

- Book: Beyer & Schwefel [2002]
- Popular variant: CMA-ES
 [Hansen, 2016]
 - Very competitive for HPO of deep neural nets [Loshchilov & H., 2016]
 - Embarassingly parallel
 - Purely continuous



Bayesian Optimization

• Approach

- Fit a proabilistic model to the function evaluations $\langle \lambda, f(\lambda) \rangle$
- Use that model to trade off exploration vs. exploitation
- Popular since Mockus [1974]
 - Sample-efficient
 - Works when objective is nonconvex, noisy, has unknown derivatives, etc
 - Recent convergence results
 [Srinivas et al, 2010; Bull 2011; de Freitas et al, 2012; Kawaguchi et al, 2016]

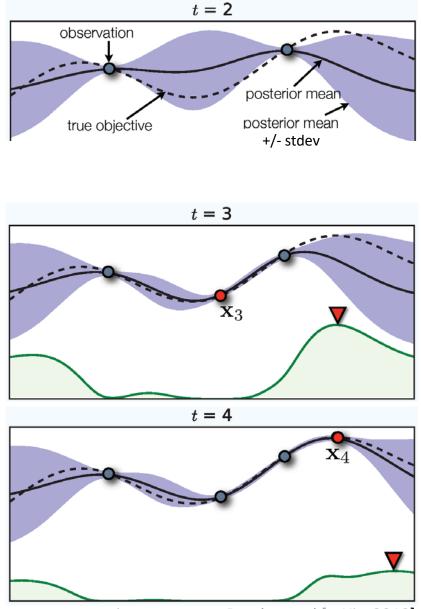


Image source: Brochu et al [arXiv, 2010]

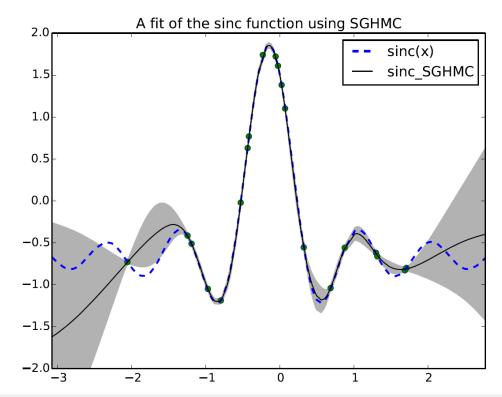
- Problems for standard Gaussian Process (GP) approach:
 - Complex hyperparameter space
 - High-dimensional (low effective dimensionality) [Wang et al, 2013]
 - Mixed continuous/discrete hyperparameters [H. et al, 2011]
 - Conditional hyperparameters [Swersky et al, 2013; Levesque et al, 2017]
 - Non-standard noise

- Non-Gaussian [Williams et al, 2000; Shah et al, 2018; Martinez-Cantinet al, 2018]
- Sometimes heteroscedastic [Le et al, 2005; Wang & Neal, 2012]
- Robustness of the model [Malkomes and Garnett, 2018]
- Model overhead [Quiñonero-Candela & Rasmussen, 2005; Bui et al, 2018; H. et al, 2010]
- Simple solution used in SMAC: random forests [Breiman, 2001]
 - Frequentist uncertainty estimate:
 variance across individual trees' predictions [H. et al, 2011]

Bayesian Optimization with Neural Networks

- Two recent promising models for Bayesian optimization
 - Neural networks with Bayesian linear regression using the features in the output layer [Snoek et al, ICML 2015]
 - Fully Bayesian neural networks, trained with stochastic gradient Hamiltonian Monte Carlo [Springenberg et al, NIPS 2016]
- Strong performance on low-dimensional continuous tasks

- So far not studied for:
 - High dimensionality
 - Discrete & conditional hyperparameters

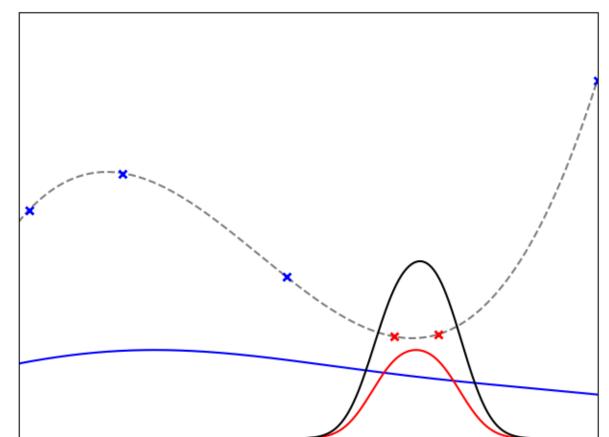


Tree of Parzen Estimators (TPE)

[Bergstra et al, NIPS 2011]

- Non-parametric KDEs for p(λ is good) and p(λ is bad), rather than p(y|λ)
- Equivalent to expected improvement
- Pros:

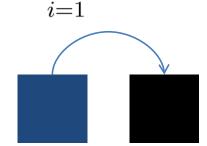
- Efficient: O(N*d)
- Parallelizable
- Robust
- Cons:
 - Less sampleefficient than GPs



HPO enables AutoML Systems: e.g., Auto-sklearn [Feurer et al, NIPS 2015] Meta-level learning & optimization

• Optimize CV performance by SMAC

- Meta-learning to warmstart Bayesian optimization
 - Reasoning over different datasets
 - Dramatically speeds up the search (2 days \rightarrow 1 hour)
- Automated posthoc ensemble construction to combine the models we already evaluated
 - Efficiently re-uses its data; improves robustness



HPO enables AutoML Systems: e.g., Auto-sklearn

- Winning approach in the AutoML challenge
 - Auto-track: overall winner, 1st place in 3 phases, 2nd in 1
- Fort me on CitHus - Human track: always in top-3 vs. 150 teams of human expert
 - Final two rounds: won both tracks

UNI FREIBURG

https://github.com/automl/auto-sklearn

🗊 Used by 🕶	43	O Watch ▼	196	★ Star	3,477	% Fork	
							ù

Trivial to use, open source (BSD):

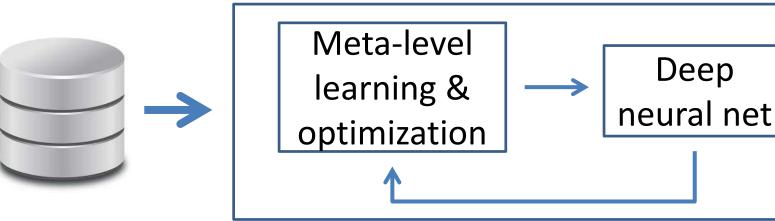
import autosklearn.classification **as** cls automl = cls.AutoSklearnClassifier() automl.fit(X train, y train) y hat = automl.predict(X test)

669

HPO enables AutoML Systems: e.g., Auto-Net

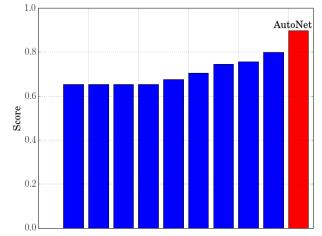
[Mendoza et al, AutoML 2016]

Deep



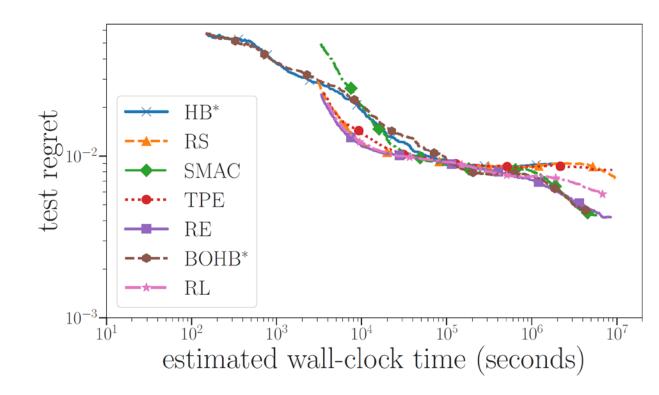
- Joint Architecture & Hyperparameter Optimization
- Auto-Net won several datasets against human experts
 - E.g., Alexis data set (2016)

- 54491 data points, 5000 features, 18 classes
- First automated deep learning system to win a ML competition data set against human experts



Evaluation on NAS-Bench-101

- NAS-Bench-101 [Ying et al, ICML 2019]
 - Exhaustively evaluated, small, cell search space
 - Tabular benchmark for 423k possibilities
 - Allows for statistically sound & comparable experimentation
- Result:
 SMAC and regularized evolution outperform reinforcement learning



Other Extensions of Bayesian Optimization

- Joint optimization of a vision architecture with 238 hyperparameters with TPE [Bergstra et al, ICML 2013]
- Kernels for GP-based NAS

UNI FREIBURG

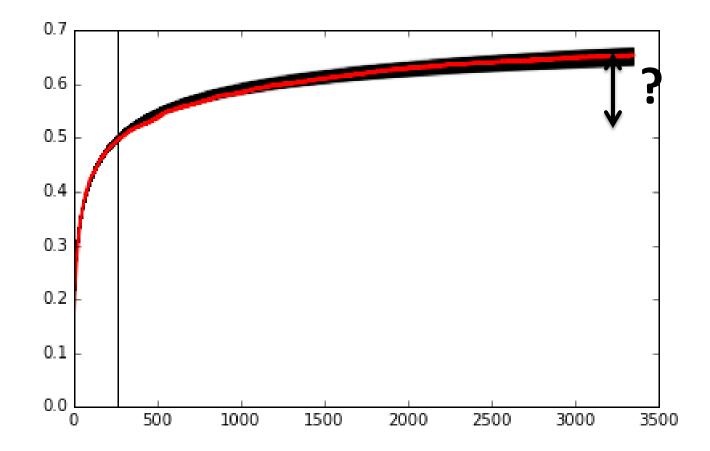
- Arc kernel [Swersky et al, BayesOpt 2013]
- NASBOT [Kandasamy et al, NIPS 2018]
- Sequential model-based optimization

- PNAS [Liu et al, ECCV 2018]

1. Blackbox Bayesian Hyperparameter Optimization

- 2. Beyond Blackbox: Speeding up Bayesian Optimization
- 3. Hyperparameter Importance Analysis
- 4. Case Studies

Probabilistic Extrapolation of Learning Curves



- Parametric learning curve models [Domhan et al, IJCAI 2015]
- Gaussian process with special kernel [Swersky et al, arXiv 2014]
- Bayesian (recurrent) neural networks [Klein et al, ICLR 2017; Gargiani et al, AutoML 2019]

- Multitask Bayesian Optimization
 - Using Gaussian processes [Swersky et al, NIPS 2013]
 - Gaussian processes with special dataset kernel
 [Bardenet et al, ICML 2013; Yogatama & Mann, AISTATS 2014]
 - Using neural networks [Perrone et al, NIPS 2018]

Warmstarting

- Initialize with previous good models [Feurer et al, AAAI 2015]
- Learn weights for each previous model [Feurer et al, arXiv 2018]
- Transfer acquisition functions
 - Mixture of experts approach [Wistuba et al, MLJ 2018]
 - Meta-learned acquisition function [Volpp et al, arXiv 2019]

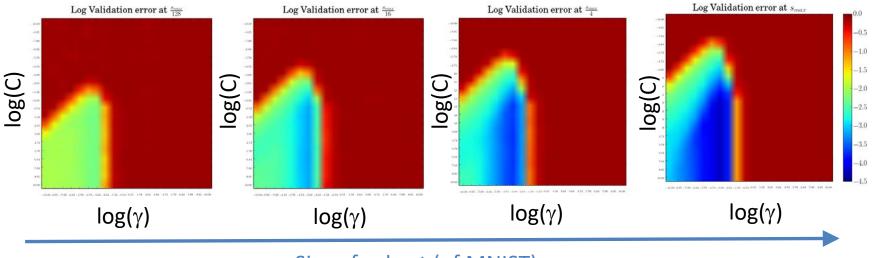
- Use cheap approximations of the blackbox, performance on which correlates with the blackbox, e.g.
 - Subsets of the data
 - Fewer epochs of iterative training algorithms (e.g., SGD)
 - Shorter MCMC chains in Bayesian deep learning
 - Fewer trials in deep reinforcement learning
 - Downsampled images in object recognition
 - Also applicable in different domains, e.g., fluid simulations:
 - Less particles
 - Shorter simulations

Multi-fidelity Optimization

UNI FREIBURG

• Make use of cheap low-fidelity evaluations

- E.g.: subsets of the data (here: SVM on MNIST)



Size of subset (of MNIST)

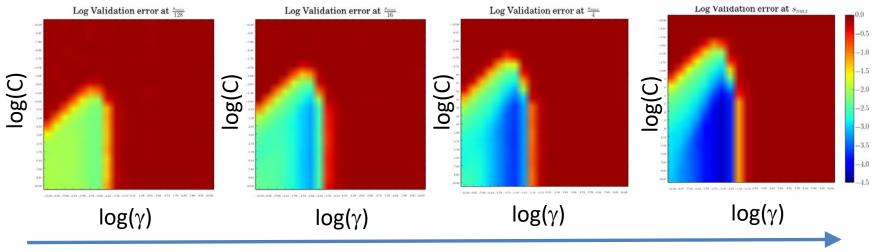
- Many cheap evaluations on small subsets
- Few expensive evaluations on the full data
- Up to 1000x speedups [Klein et al, AISTATS 2017]

Multi-fidelity Optimization

UNI FREIBURG

• Make use of cheap low-fidelity evaluations

- E.g.: subsets of the data (here: SVM on MNIST)



Size of subset (of MNIST)

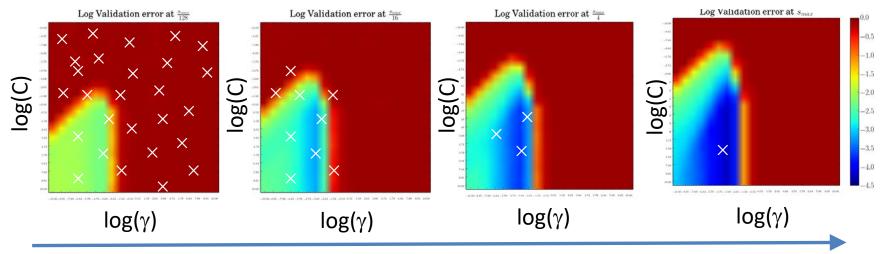
- Fit a Gaussian process model f(λ ,b) to predict performance as a function of hyperparameters λ and budget b
- Choose both λ and budget b to maximize "bang for the buck"
 [Swersky et al, NIPS 2013; Swersky et al, arXiv 2014;
 Klein et al, AISTATS 2017; Kandasamy et al, ICML 2017]

Multi-fidelity Optimization

UNI FREIBURG

Make use of cheap low-fidelity evaluations

- E.g.: subsets of the data (here: SVM on MNIST)



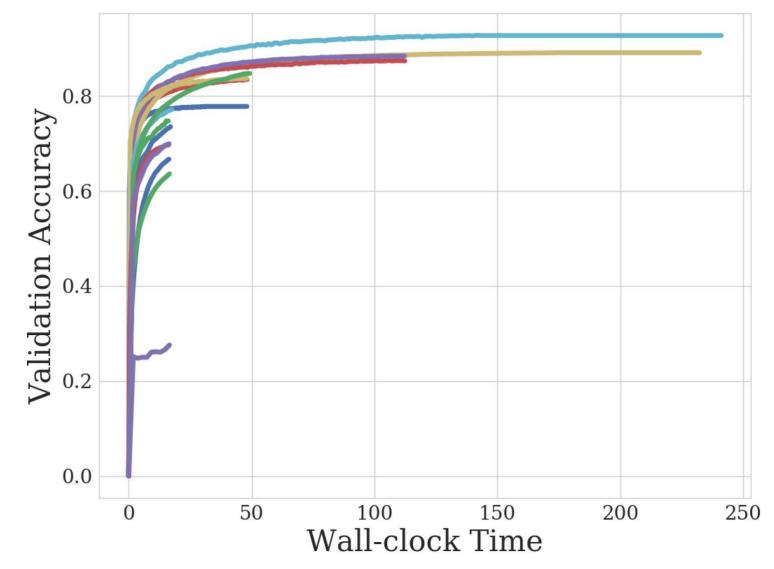
Size of subset (of MNIST)

- A simpler approach: successive halving [Jamieson & Talwalkar, AISTATS 2016]
 - Initialize with lots of random configurations on the smallest budget
 - Top fraction survives to the next budget

Successive Halving (SH) for Learning Curves

UNI FREIBURG

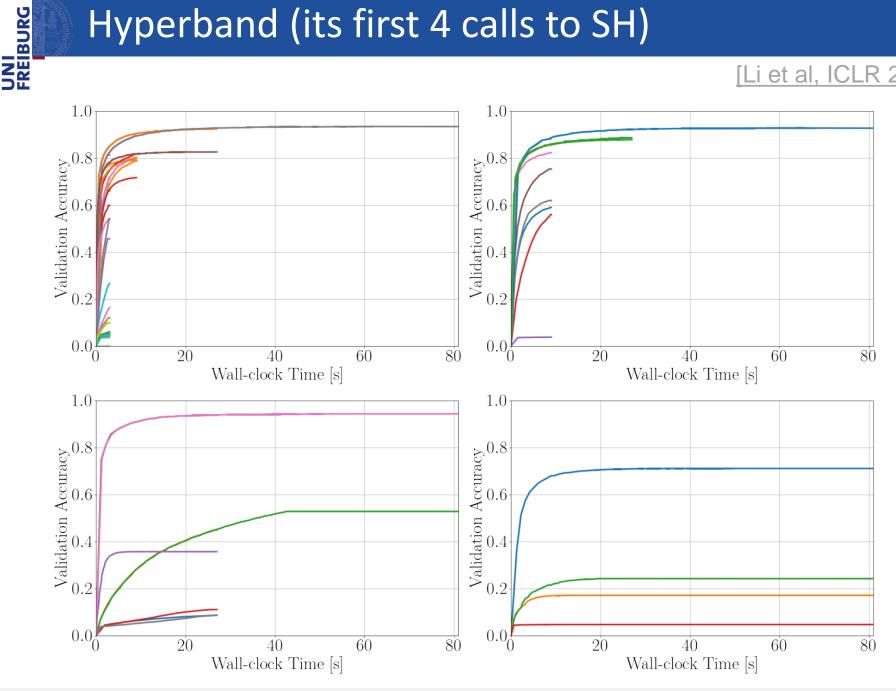
[Jamieson & Talwalkar, AISTATS 2016]



Frank Hutter: Bayesian Optimization and Meta-Learning

Hyperband (its first 4 calls to SH)

[Li et al, ICLR 2017]



Frank Hutter: Bayesian Optimization and Meta-Learning

BOHB: Bayesian Optimization & Hyperband

[Falkner et al, ICML 2018]

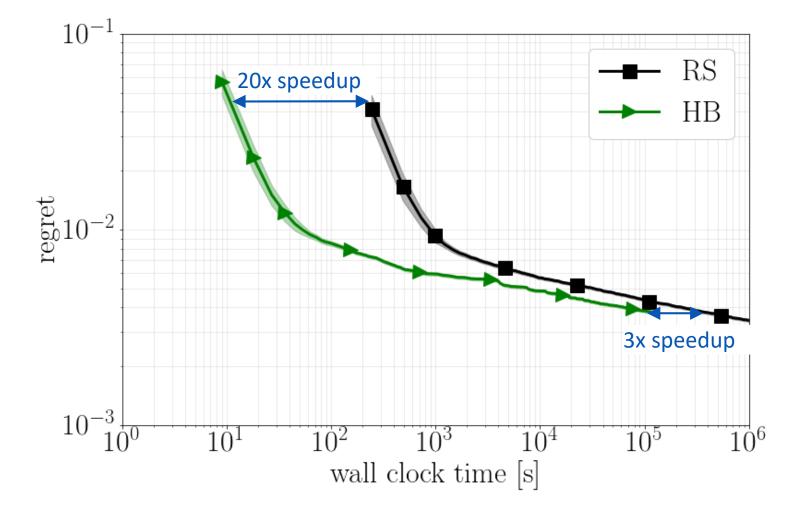
Advantages of Hyperband

- Strong anytime performance
- General-purpose
 - Low-dimensional continuous spaces
 - High-dimensional spaces with conditionality, categorical dimensions, etc
- Easy to implement
- Scalable

- Easily parallelizable
- Advantage of Bayesian optimization: strong final performance
- Combining the best of both worlds in BOHB
 - Bayesian optimization
 - for choosing the configuration to evaluate (using a TPE variant)
 - Hyperband
 - for deciding how to allocate budgets

Hyperband vs. Random Search

UNI FREIBURG

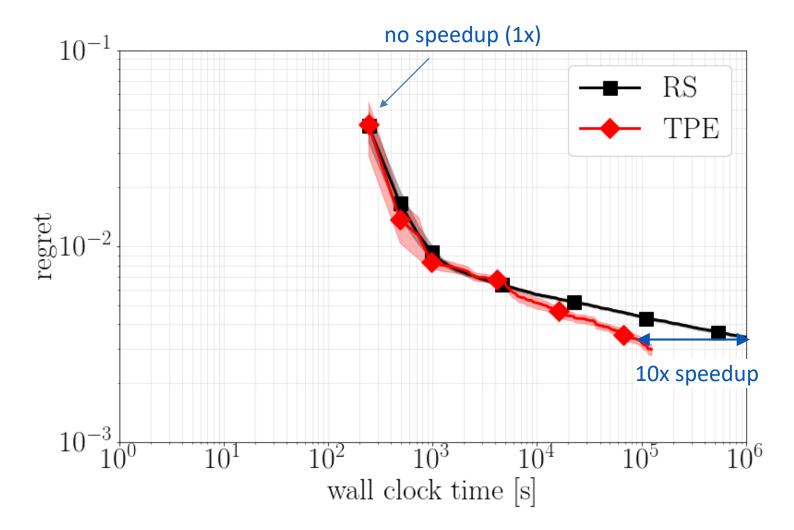


Biggest advantage: much improved anytime performance

Auto-Net on dataset adult

Bayesian Optimization vs Random Search

UNI FREIBURG

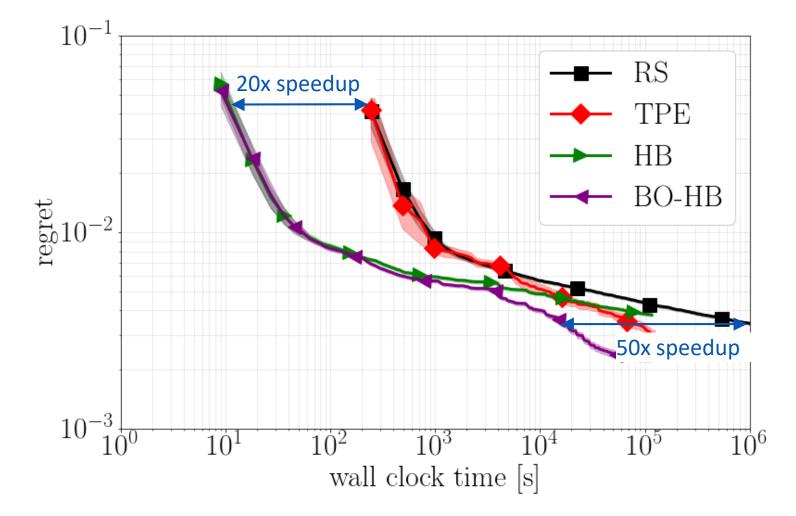


Biggest advantage: much improved final performance

Auto-Net on dataset adult

Combining Bayesian Optimization & Hyperband

UNI FREIBURG

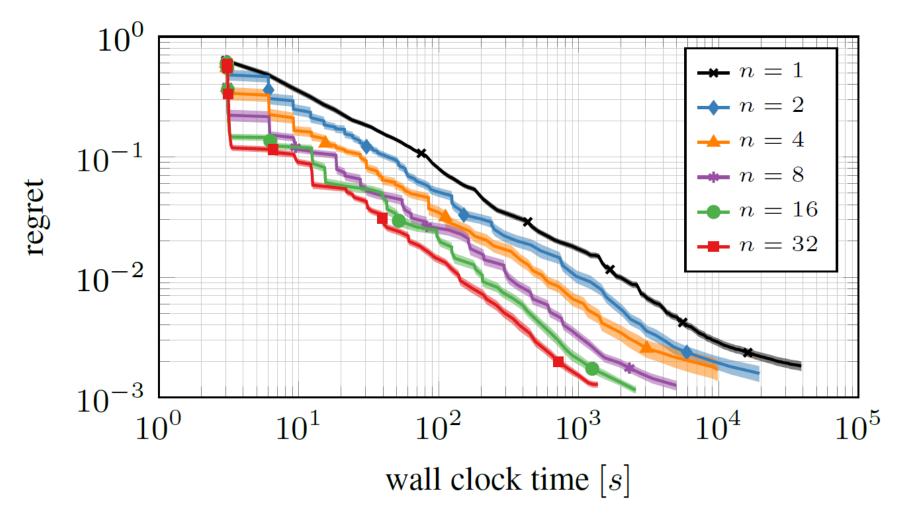


Best of both worlds: strong anytime and final performance

Auto-Net on dataset adult

Almost linear speedups by parallelization

UNI FREIBURG



Auto-Net on dataset letter

HPO for Practitioners: Which Tool to Use?

• If you have access to multiple fidelities

- We recommend BOHB [Falkner et al, ICML 2018]
- <u>https://github.com/automl/HpBandSter</u>
- Combines the advantages of TPE and Hyperband
- If you do not have access to multiple fidelities
 - Low-dim. continuous: GP-based BO (e.g., Spearmint)
 - High-dim, categorical, conditional: SMAC or TPE
 - Purely continuous, budget >10x dimensionality: CMA-ES

- 1. Blackbox Bayesian Hyperparameter Optimization
- 2. Beyond Blackbox: Speeding up Bayesian Optimization
- 3. Hyperparameter Importance Analysis
- 4. Case Studies

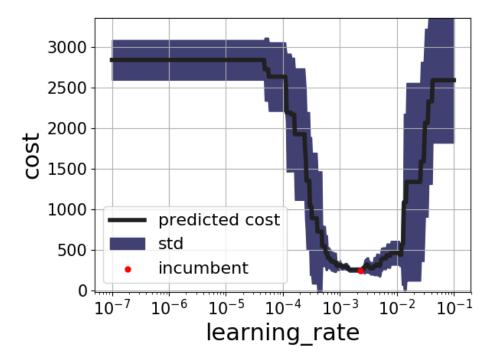
UNI FREIBURG

Common question: Which hyperparameters actually matter?

- Hyperparameter space has low effective dimensionality
 - Only a few hyperparameters matter a lot
 - Many hyperparameters only have small effects
 - Some hyperparameters have robust defaults and never need to change
- Local importance (around best configuration) vs. global importance (on average across entire space)

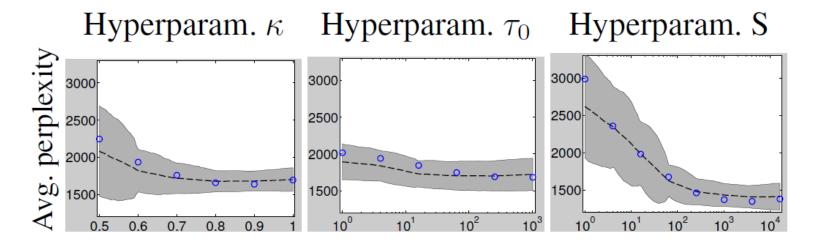
Local Hyperparameter Importance

- UNI FREIBURG Starting from best known (incumbent) configuration:
 - Assess local effect of varying one parameter at a time
 - Common analysis method
 - But typically used with additional runs around the incumbent
 - \rightarrow expensive
 - Can instead also use the model already built up during BO Biedenkapp et al, 2018]
 - Based on the BO model, this analysis takes milliseconds

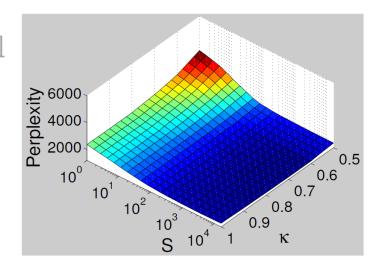


Global Hyperparameter Importance

UNI FREIBURG Marginalize across all values of all other hyperparameters:



- Functional ANOVA [H. et al, 2014]
 - 65% of variance is due to S
 - Another 18% is due to interaction between S and κ
- These plots can be done as postprocessing for BOHB: link



- 1. Blackbox Bayesian Hyperparameter Optimization
- 2. Beyond Blackbox: Speeding up Bayesian Optimization
- 3. Hyperparameter Importance Analysis
- 4. Case Studies
 - a. BOHB for AutoRL
 - b. Combining DARTS & BOHB for Auto-DispNet

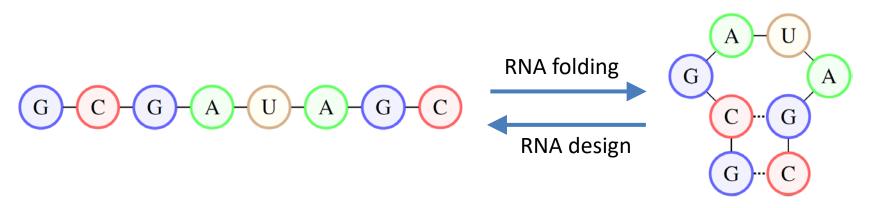
Parallel work for AutoRL in robotics: [Chiang et al, ICRA 2019]

Application Domain: RNA Design

UNI FREIBURG **Background on RNA:**

Stoll et al, ICLR 2019]

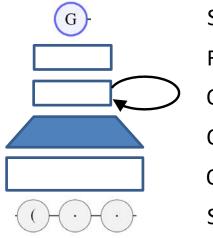
- Sequence of nucleotides (C, G, A, U)
- Folds into a secondary structure, which determines its function
- RNA design: find an RNA sequence that folds to a given structure



- RNA folding is O(N³) for sequences of length N
- RNA design is computationally hard
 - Typical approach: generate and test; local search
 - LEARNA: learns a policy network to sequentially design the sequence
 - Meta-LEARNA: meta-learn this policy across RNA sequences

AutoML for LEARNA and Meta-LEARNA ("Auto-RL")

We optimize the policy network's neural architecture



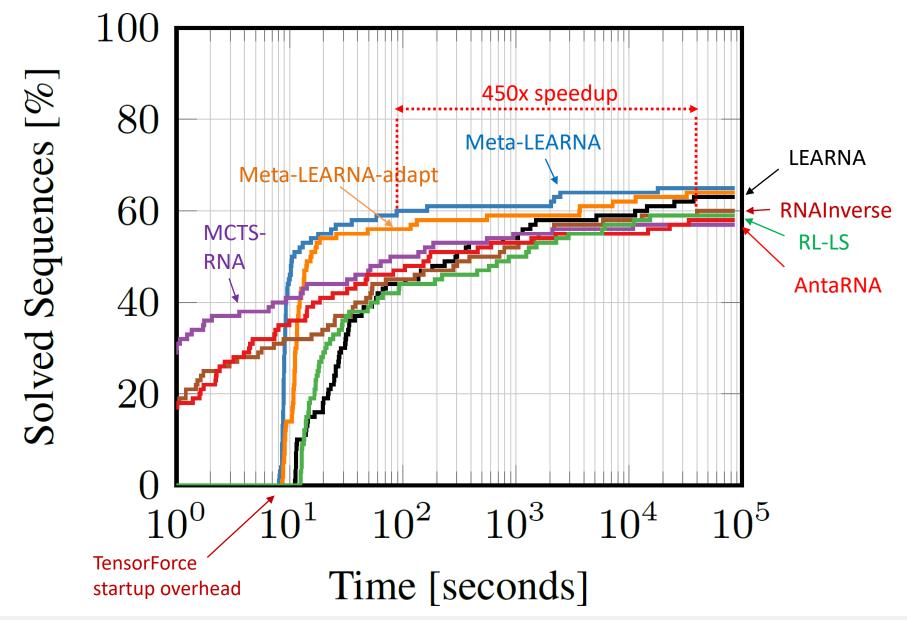
Sampled action Fully connected Optional RNN (up to 2 layers) Optional CNN (up to 2 layers) Optional embedding

State representation: n-grams

- At the same time, we jointly optimize further hyperparameters:
 - Length of n-grams (parameter of the decision process formulation)
 - Learning rate
 - Batch size

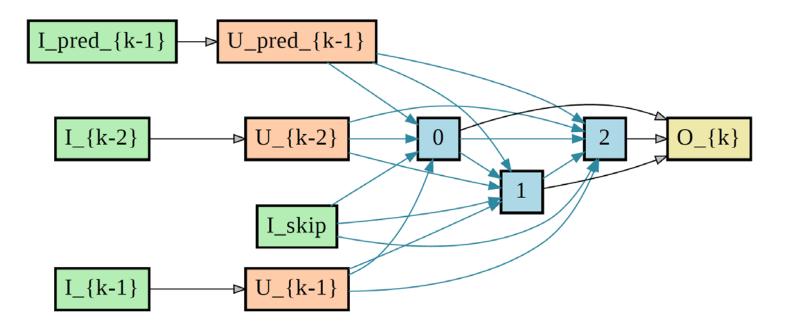
- Strength of entropy regularization
- Reward shaping

Results: 450x speedup over state-of-the-art



- 1. Blackbox Bayesian Hyperparameter Optimization
- 2. Beyond Blackbox: Speeding up Bayesian Optimization
- 3. Hyperparameter Importance Analysis
- 4. Case Studies
 - a. BOHB for AutoRL
 - b. Combining DARTS & BOHB for Auto-DispNet

 Cell search space for a new upsampling cell with U-Net like skip connections



• NAS: optimize neural architecture with DARTS

- Faster than BOHB

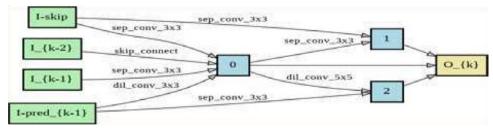
• HPO: then optimize hyperparameters with BOHB

- DARTS does not apply
- The weight sharing idea is restricted to the architecture space

• Result:

- Both NAS and HPO yielded substantial improvements
- E.g., EPE on Sintel: 2.36 -> 2.14 -> 1.94

Qualitative result



Selected upsampling cell

Frank Hutter: Bayesian Optimization and Meta-Learning

Conclusion

- Bayesian optimization (BO) allows joint neural architecture search & hyperparameter optimization
 - Yet, its vanilla blackbox optimization formulation is slow
- Going beyond blackbox BO leads to substantial speedups
 - Extrapolating learning curves
 - Reasoning across datasets
 - Multi-fidelity BO method BOHB is robust & efficient
- We can quantify the importance of hyperparameters
- Case studies: BOHB is versatile & practically useful
 - For "AutoRL"
 - For disparity estimation in combination with DARTS